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To enhance human-computer interaction in naturalistic environments, a computing system could benefit
from predicting where a user will direct their visual attention, which would allow it to adapt its behaviour
accordingly. We investigated whether future visual attention could be predicted from past eye-gaze dynamics
in a simulated meeting in virtual reality. From recorded eye movements, we extracted gaze samples across
objects and people, which significantly reduced the dimensionality of the input and output space of the model
compared to a coordinate-based approach and enabled us to train predictive time-series models on long (16min)
videos with low computational costs. Compared to baseline and classical autoregressive models, a recurrent
neural network model improved performance in future gaze prediction by 64%. Using a self-supervised
approach, these initial results suggest that there is structure in users’ gaze dynamics and that predictive models
could be used to enable human-centric adaptive interfaces.

CCS Concepts: • Human-centered computing→ User models; Virtual reality.

Additional KeyWords and Phrases: visual attention, eye tracking, eye-gaze dynamics, virtual reality, predicting
user intent, time-series modelling, recurrent neural network, self-supervised training

ACM Reference Format:
Gabor Lengyel, Kevin Carlberg, Majed Samad, and Tanya Jonker. 2021. Predicting visual attention using the
hidden structure in eye-gaze dynamics. In CHI ’21 EMICS ’21: Predicting visual attention using the hidden
structure in eye-gaze dynamics, May 15, 2021, Virtual Workshop. ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION
People move their eyes across visual scenes to extract information relevant for their goals [11]. As
they gather information relevant to their task, they drive future eye movements towards areas of
interest. In dynamic, information-rich environments, this active, goal-directed sensing becomes
increasingly complex [8], and yet adaptive human-computer interaction systems would benefit
greatly from the ability to predict future targets of eye gaze in such complex environments. A
computing system that can predict future targets of gaze could reduce its hypothesis space of
possible future interactions and prepare its capabilities to the new targets of attention, which would
decrease the friction in the interaction (for a discussion of the problem space, see [9]).

However, recent generative and predictive models of visual attention are still not performant in
complex, dynamic environments [2, 8, 17]. In a real-world interaction task, visual scenes contain a
large number of possible states for the model to consider, and the dynamical interaction between
these states increases the state space exponentially with time. Therefore, due to the computational
complexity of these models, the majority of prior research has focused on predicting gaze in static
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images [2–4, 13]. Computational models in the Bayesian generative framework [4, 8, 12, 19] become
computationally intractable even for static images and require time-costly approximations for
high-dimensional state spaces [1, 10]. However, predictive deep neural network (DNN) models
have extended visual saliency mapping to short video clips and are capable of predicting regions in
frames that might draw attention in the future with high precision [7, 15, 16, 18]. The drawback of
these DNNs is that they use enormous number of parameters [2, 17], which limits consideration to
short video clips (e.g., 5-30 seconds).

We hypothesized that the long-term dynamics of gaze contains rich statistical structure that can
be used to predict future eye gaze. However, to date, this hypothesis has rarely been explored due
to computational costs. Here, we developed a modeling framework with low computational and
data requirements, which allowed us to investigate the statistical information in long-term gaze
dynamics for predicting future targets of gaze. To this end, we collected eye-tracking data from
participants passively observing a 16-minute simulated meeting in VR. Our model predicted the
target of future gaze (e.g., an object) instead of predicting the 3-dimensional coordinates of the
environment (see Fig. 1D). We call the relevant objects in the VR environment of our experiment
targets of interest and filter the eye-tracking data by only considering eye gaze directed to these
targets while disregarding eye gaze on other areas of the environment. Given that prior work
has demonstrated that people tend to look at objects regardless of whether objects are defined by
low-level visual [3] or high-level semantic [5] cues, our approach preserves the most informative
part of eye gaze while providing the benefit of reduced computational costs. Our framework is
highly flexible to any set of objects, allowing a designer to specify potential objects of interaction
and then model visual attention across these, substantially reducing the computational burden
while simultaneously increasing the interpretability of the model outputs for human-computer
interaction applications.

2 METHODS
2.1 Participants, Stimuli, Equipment, and Procedure
In the VR experiment, participants (n=6, 2 female, age range=35-45) each observed the same
fictional discussion between four scientists who were planning an extension of a base on the
moon. Participants’ eye movements were recorded during the 16 minutes long VR meeting using a
prototype VR headset with built-in eye tracking with sampling rate between 57-85hz (see A.1-3).

2.2 Analysis and models
First, we filtered the eye-gaze data to extract gaze samples directed to the targets of interest. We
defined targets of interest as all dynamic objects and people during the meeting (see Fig. 1D and
A.2 & A.4). Then, the gaze samples were summed across a “time step” and we considered three
different sizes each of which contained 10, 20, and 30 gaze samples to ensure that our results were
not dependent on an arbitrarily selected time step size (these corresponded to 118-175, 236-350,
and 354-525 ms intervals, respectively, depending on sampling rate of the eye tracker). We had
between 1829 to 8136 time steps in a session for each participant. Second, we trained a Vanilla RNN
model [14] for each participant, which predicted the distribution of the observer’s eye gaze across
the targets of interest in the VR environment. At each time step, the input to our computational
models corresponded to the gaze counts over each targets of interest and the non-target category
(see Fig.1D). We compared the RNN model to a baseline model to test whether the RNN model
could learn structure in long-term gaze dynamics. The baseline model (PREV) weighted the current
gaze counts to predict the gaze counts in the next time step. We also compared the RNN model
to a classical linear autoregressive model to investigate whether the structure in the long-term
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Fig. 1. Panel A. The map of the environment in the VR experiment. The blue circle on the map shows the
place where the participants was located. The colored rectangles show the bounding boxes of the relevant
objects and the people (i.e., targets of interest). Panel B. Screenshots of the VR meeting with overlaid eye
gaze samples. Red dots show the locations of the gaze during the given time step. Note that the red dots were
artificially generated for this figure. Panel C. Hypothetical data showing gaze sampling by time step. The
colored lines represent the gaze counts over each target of interest. The figure shows how the two example
scenes with the gaze sample points in panel B corresponds to two data points in the figure in panel C. Panel D.
Data preprocessing details. For each gaze sample, we first identified the target based on the gaze coordinate
(each gaze sample corresponded to a time increment of 12-18 ms depending on the sampling rate of the eye
tracker); then, we summed 10, 20, and 30 gaze samples together to create larger time steps (here, we show 20
gaze samples per time step). All gaze samples that did not intersect a target of interest were assigned to a
“non-target” category.

gaze dynamics is more complex than a linear combination of past gaze counts (see the details of
the models in A.5). The autoregressive and RNN models were trained and tested within-subject
with hyperparameter tuning. During model training, we split our data into training (first 60% of
the data), validation (next 20%), and test (last 20%) sets and used negative log likelihood for loss
function (see A.5). The training, being self-supervised, did not require any special labels, as the
model was predicting gaze counts at the next time step using gaze counts from the current time
step. To evaluate the models, we computed fraction of variance unexplained (FVU) on the test set,
contrasting the predicted gaze samples with the observed gaze samples for that time step. FVU is a
standard error metric for regression tasks; lower values indicate a better fitting model reflecting
stronger correlation between the predicted and the observed values on the test set (see A.5).
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3 RESULTS
First, the contrast with the baseline model allowed us to test whether using the longer history of
eye movements would improve the prediction of future eye gaze. If there is hidden structure in the
long-term gaze dynamics, the RNNs should outperform the baseline (PREV). We found that RNNs
outperformed the baseline by 71% on average and reduced the FVU by 79% (SD=9%) in the small 10
samples
time step , by 69% (SD=12%) in the medium 20 samples

time step , and by 67% (SD=12%) in the large 30 samples
time step

conditions compare to the baseline (Fig. 2). Second, the contrast with the autoregressive models
allowed us to test whether the structure the RNNs learned in the long-term gaze dynamics is more
complex than a linear combination of past gaze targets. The RNNs attained smaller errors on the
test set than autoregressive models (AR) and reduced the FVU by 64% (SD=10%) in the small 10
samples
time step , by 55% (SD=12%) in the medium 20 samples

time step , and by 49% (SD=10%) in the large 30 samples
time step

conditions compare to the autoregressive models (Fig. 2). All of these results were consistent across
all participants (see the lines in Fig. 2). Thus, despite our small sample (due to difficulties running
eye-tracking studies during COVID-19), the remarkable consistency across participants provides
evidence that gaze dynamics contain hidden structure that can be used to predict future eye gaze.
Regarding the hyperparameter tuning, we found that for each participant the best performing
RNNs were with 100 latent states (100 was the maximum value in our hyperparameter search) and
models with one and two layers performed equally well.

10 gaze samples
 per timestep 

20 gaze samples
 per timestep

30 gaze samples
 per timestep

Fig. 2. Fraction of variance unexplained (FVU) computed on the test set in the three training conditions, each
with different time step sizes. Lower FVU scores indicate better performance on the test set. The bars reflect
the average FVU values across participants. The dots reflect each participant’s individual FVU value, with
lines connecting the FVU values for each participant across the two conditions. PREV = weighted previous
step baseline model. AR = linear autoregressive model. RNN = vanilla RNN time-series model.

4 DISCUSSION AND CONCLUSION
We trained within-subject, self-supervised Vanilla RNN models to predict the future targets of
attention using eye-tracking data from a VR experiment. The results provide evidence for hidden
structure in gaze for the considered scenarios, which can be used to predict future gaze. In particular,
RNNs with one and two layers and 100 hidden states were able to improve upon the baseline and
autoregressive models, on average, by 64%. Due to the effect of COVID-19, we were unable to
collect a large sample in our laboratories. However, the observed pattern of results was highly
consistent across all of our participants, suggesting robustness of these results.
The main advantage of our approach compared to previous studies of gaze prediction is that

we filtered the environment based on relevant objects and people. This method moves away from
the pixel/coordinate based description of the environment and focuses the predictive modeling
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to the targets of interest, which drastically reduces the dimensionality of the input and output
of the models and allows for lighter weight systems that could be capable of predicting in real-
time. For example, future experiments could show that our approach can handle motion of the
observer and the targets of interest, a problem that is far more complex with a pixel-based approach.
Furthermore, this approach provides interpretable outputs, which can be used by a designer to
establish particular interaction rules. For example, when the output indicates attention to the
augmented reality calendar app, the system could map controls to X actions, whereas when it
indicates attention to the augmented reality messaging app, it could map controls to Y actions.
Additionally, the modeling approach we demonstrate here is very flexible and can be applied to
different tasks, environments, and research goals by simply redefining the targets of interest.
In this work, the models used gaze data alone to predict future eye gaze. In future studies, the

modelling framework can incorporate additional input features (e.g., onset of the speech, head
and hand movements, semantics of the conversation, history of interactions), which might further
improve the performance of the considered models. For example, future experiments could show
that our approach can handle motion of targets of interest (unlike a pixel-based approach), which
happens in real world usage. The current model assumes a fixed set of objects in the environment
and future work can extend the current framework to incorporate objects appearing, disappearing,
and reappearing in a changing real world environment. Furthermore, we used within-subject
modeling only and future work might explore group-level modeling to develop methods that could
work for a new participant immediately upon donning a headset.

The modeling framework we present here provides a lightweight, computationally tractable
method for real-time prediction of visual attention for human-computer interaction applications
and adaptive interface design. Indeed, the adaptive interactions that can be enabled by accurate
long-term attention prediction would greatly improve the user experience through reduced latency,
reduced friction, reduced explicit interaction, and enhanced capabilities.
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A SUPPLEMENTARY METHODS
A.1 Participants
Six participants (2 female, mean age = 40, age range = 35-45) completed our experiment. All
participants were employees at Facebook Reality Labs. Our sample size was small due to substantial
challenges with participant recruitment during the COVID-19 pandemic.

A.2 Stimuli and Equipment
In the experiment, participants observed a meeting in virtual reality (VR), which was designed and
created for the experiment. The meeting involved a fictional discussion between four scientists
who were planning an extension of a base on the moon. The dialogue was paired with realistic
avatars and mouth movements were rendered from audio using the Oculus Lipsync package for
Unity. Screenshots and the map of the environment can be seen in Fig. 1, panels A & B.

The VR experience was 16 minutes long and participants’ eye movements were recorded using
a prototype VR headset with built-in eye tracking. The sampling rate of the eye tracking varied
between 57-85hz across participants due to slight variation in the headset prototypes of the partici-
pants. The eye trackers were calibrated to an angular accuracy of less than 1.1 degrees. The VR
headset included 2K x 2K displays with 100° field-of-view for VR visuals.
Instead of predicting the coordinates of the eye gaze, we predicted the distribution of eye

gaze across relevant objects (i.e., targets of interest) in the VR environment (see Fig. 1D). In this
environment, we defined targets of interest as all dynamic objects and people during the meeting.
These targets of interest comprised the following: the four animated characters, the projection
screen (on which the important information appeared during the meeting), and the animated
cell phone of the participant that buzzed and displayed text messages several times during the
experiment. The rest of the objects (others’ laptops, chairs, lamp, and desk) in the environment
were static and did not convey any information to the participant during the experiment; thus,
prior to analyses, they were excluded.
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A.3 Study Procedure
Prior to launching the VR meeting, participants seated themselves in a comfortable position and
were asked to passively observe the meeting and behave naturally. Participants’ head motion was
not restricted, and they were encouraged to look around freely. They were also informed that they
would not have to interact with the characters during the meeting.

A.4 Data Preprocessing
The eye-gaze data preprocessing was crucial in our computational framework to reduce drastically
the number of possible spatial states that the gaze could take. Instead of using each pixel or grid
location as possible states of eye movements in the 3-dimensional environment, we only considered
a subset of relevant objects. This reduction in the state-space allowed us to use data from long
dynamic scenes as input to computational models; if we were instead to use pixel/coordinate-based
state-spaces, it would be intractable or very computationally costly for such long scenes.

The eye-gaze data preprocessing steps are shown in Fig. 1, panel D. First, we identified the target
of each gaze sample based on the spatial coordinates that intersected the gaze ray. All gaze samples
that did not intersect a target of interest were assigned to a “non-target” category. Next, we binned
the gaze samples into time steps. For each time step, we extracted the number of gaze samples for
each targets of interest and the non-target category. On average, the non-target category contained
32% percent of the gaze samples
To ensure that our results were not dependent on an arbitrarily selected time step size, we

considered three different sizes each of which contained 10, 20, and 30 gaze samples. We used
the number of gaze samples instead of time duration in ms to determine the time step sizes for
the participants because we wanted to have the same number of gaze samples in a time step for
all participants. Had we used fixed time duration in ms for the time steps across participants we
would have had different number of eye gaze samples in a time step for our participants because
the sampling rates of their eye tracking devices were different (it varied between 57-85hz). The 10,
20, and 30 time step sizes corresponded to 118-175, 236-350, and 354-525 ms intervals, respectively,
depending on the sampling rate of each participant’s eye-tracker. Given that the length of the
experimental sessions was 16 min, we had between 1829 to 8136 time steps in a session for each
participant.

The input to the time-series models at each time step corresponded to the gaze counts over all 7
categories (targets of interest and the non-target category) at the current time step. To train and
test the time-series models we used separate training, validation, and test windows of multiple
time steps; each window contained the time-series of gaze counts as input.

A.5 Analysis and Models
Previous research has not yet explored whether the long-term dynamics of gaze can be used to
predict future gaze targets. Therefore, as a first step, we implemented classical RNN time-series
models that can learn the hidden long-term dynamics of gaze. The preprocessing step described
above resulted in a time-series of gaze counts over the targets of interest. We modeled these data
as a time-series:

𝑦𝑖𝑡 ∈ {0, . . . , 𝑛𝑡 }, 𝑖 = 1, . . . ,𝐶 , 𝑡 = 1, . . . ,𝑇 , with
∑
𝑖

𝑦𝑖𝑡 = 𝑛𝑡 , (1)

where 𝑦𝑖𝑡 ∈ N denotes the number of eye gaze samples landing on target of interest 𝑖 at time step 𝑡 ,
𝐶 denotes the total number of targets of interest (including the non-target category), 𝑇 denotes the
total number of time steps, and 𝑛𝑡 denotes the total number of gaze samples in each time step 𝑡 .
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Thus, for time step 𝑡 , the vector Y𝑡 ≡ [𝑦1𝑡 , . . . , 𝑦𝐶𝑡 ] ∈ N𝐶 represents gaze-sample counts for each
target of interest from the total number of eye gaze samples 𝑛𝑡 .
The Vanilla RNN assumes a latent-state time-series regression model where the time-series Y𝑡 ,

𝑡 = 1, . . . ,𝑇 is driven by latent dynamics; i.e., the time-series depends on a hidden process Z𝑡 ∈ R𝑝 ,
𝑡 = 1, . . . ,𝑇 , which itself depends on the history of the latent process and some external input.
For input, we only employed the gaze counts from the current time step Y𝑡−1. In particular, we
employed the following formulation for latent-dynamics models:

Z𝑡 = 𝑓 (Z𝑡−1, Y𝑡−1) (2)

𝝀𝑡 = ℎ(Z𝑡 ) (3)

𝜋𝑖
𝑡 =

exp
(
𝜆𝑖𝑡
)∑𝐶

𝑗=1 exp
(
𝜆𝑡
𝑗

) (4)

𝑝 (Y𝑡+𝑀 | 𝑛𝑡 , 𝝅𝑡 ) =
𝑛𝑡 !∏𝐶

𝑖=1 𝑦
𝑖
𝑡+𝑀 !

𝐶∏
𝑖=1

𝜋𝑖
𝑡
𝑦𝑖
𝑡+𝑀 , (5)

where the functions 𝑓 and ℎ model the latent dynamics and the mapping from the latent states
to the multinomial logits, respectively. Here, 𝑀 denotes the number of time steps in the future
for prediction. We used𝑀 = 0 for training the models to predict one time step ahead. The hidden
process was initialized with zeros. We computed the predicted values of the future gaze counts
over the targets of interest by taking the expected value of Y𝑡+𝑀 . The hyperparameters of the
Vanilla RNN comprised the number of layers and the number of hidden units. Note that this is
a self-supervised framework, as the model does not require any special labels; the inputs and the
outputs correspond to the same visual attention data. This method allows us to investigate the
extent to which the targets of eye gaze can be predicted solely from the structure hidden in the
history of eye gaze. As such, future work will consider additional input features (e.g., the onset
time of speech, head movements, or semantics of the conversation) in the model, as their inclusion
can only improve the models’ performance beyond what is reported in the current study.

During model training, we split our data into training, validation, and test sets. We kept the ratio
of the training, validation, and test sets fixed at 60%, 20% and 20%, respectively. Focusing on real
world applications, we explored whether we could predict time steps from the latter portion of
the VR session by training the model only on the first 60% of the session. Thus, we used the first
60% of the time steps for the training, the next 20% for the validation, and the last 20% for the test
sets. We split the validation set into two equal sets. One split was used to determine when to stop
the training algorithm, and the other was used to tune hyperparameters. We applied the Adam
optimizer [20] with early stopping on the first validation set. Early stopping evaluates the model’s
prediction performance after each optimization iteration using a validation set. If the change in
the prediction performance on the validation set becomes negligible (as defined by a threshold
value), then optimization iterations are terminated. We used the second validation set to tune
hyperparameters and choose the best performing model architecture for each model type. We
defined a hyperparameter grid for the number of layers (1, 2) and the hidden units (5, 10, 50, 100)
per layer.

We used negative log likelihood computed from the multinomial distribution (4) for loss function
in the training:

− log L(𝜽 ) = −
𝑇∑
𝑡=1

[
log

𝑛𝑡 !∏𝐶
𝑖=1 𝑦

𝑖
𝑡+𝑀 !

+
𝐶∑
𝑖=1

𝑦𝑖𝑡+𝑀 log𝜋𝑖
𝑡 (𝜽 )

]
, (6)
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where 𝜽 denotes the parameters of the model. We evaluated each model’s performance by
computing the fraction of variance unexplained (FVU) on the test set:

𝐹𝑉𝑈 =

∑
𝑛test (Y𝑡 − Y†𝑡 )2∑
𝑛test (Y𝑡 − Y)2

where Y =
1

𝑛test

∑
𝑛test

Y𝑡 and Y†𝑡 = 𝑛𝑡𝝅𝑡 , (7)

where Y†𝑡 are the predicted values of the models for the eye gaze counts at time step 𝑡 , which were
computed as the expected value of Y𝑡 . FVU is a standard error metric for regression tasks and
is equal to 𝐹𝑉𝑈 = 1 − 𝑅2 where 𝑅2 is the coefficient of determination [6]. FVU is closely related
to the linear correlation coefficient (CC) metric through the coefficient of determination, which
measures the proportion of variance in the actual gaze that is predictable from the gaze predicted
by the model. CC measures how correlated the predicted and actual gaze in image/video saliency
prediction task. Thus, both metrics (FVU and CC) represent the degree of correlation between the
predicted and actual gaze, however FVU is an error metric (the lower the FVU the better) while
CC is a performance metric (the larger the CC the better). We choose to use FVU instead of CC
because it is a more frequently used metric for time-series regression models (that we used here),
however both metrics would convey the same information about a model’s performance in our
modelling framework.
CC is one of the three most frequently used evaluation metrics in eye gaze prediction tasks,

along with Normalized Scanpath Saliency (NSS), and the area under the receiver operating curve
(AUC). AUC and NSS metrics are useful evaluation metrics for classification tasks. However, in
our modeling framework, both NSS and AUC would give misleading evaluation for the models’
performance because our framework involves predicting counts as outcomes i.e., the distribution
of gaze samples across relevant objects in the environment; see the loss function in (6), which was
computed from the multinomial distribution in (4).

We compared the Vanilla RNN models to a baseline models. The baseline model meant to capture
a simple computation that do not use the long-term dynamics of gaze and only weighted the values
in the previous time step by a parameter for each targets of interest and the non-target category
to predict future gaze counts, wherein 𝝀𝑡 = 𝜔Y𝑡−1 where 𝜔 ∈ R𝑐 ×𝑐 , 𝑐 is the number of targets of
interest and the non-target category, and (4)–(5) above still hold.
Finally, we also considered a simple linear autoregressive model (AR) that does not model any

latent dynamics, wherein 𝝀𝑡 = 𝜔1Y𝑡−1 +𝜔2Y𝑡−2 + . . . +𝜔𝑚Y𝑡−𝑚 where 𝜔𝑖 ∈ R𝑐 ×𝑐 and (3)–(4) above
still hold. The hyperparameter of this model was the number of previous time steps𝑚 to include in
the linear combination (the values 5, 10, 50, and 100 were considered during the hyperparameter
tuning). Note that the PREV baseline is a special case of the AR model with𝑚 = 1. The training
methods for the autoregressive models were the same as for the RNNs.
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