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ABSTRACT

With the increasing frequency of eye tracking in consumer products,
including head-mounted augmented and virtual reality displays,
gaze-based models have the potential to predict user intent and un-
lock intuitive new interaction schemes. In the present work, we ex-
plored whether gaze dynamics can predict when a user intends to in-
teract with the real or digital world, which could be used to develop
predictive interfaces for low-effort input. Eye-tracking data were
collected from 15 participants performing an item-selection task in
virtual reality. Using logistic regression, we demonstrated success-
ful prediction of the onset of item selection. The most prevalent
predictive features in the model were gaze velocity, ambient/focal
attention, and saccade dynamics, demonstrating that gaze features
typically used to characterize visual attention can be applied to
model interaction intent. In the future, these types of models can
be used to infer user’s near-term interaction goals and drive ultra-
low-friction predictive interfaces.
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1 INTRODUCTION AND RELATED WORK

To enable widespread consumer adoption of augmented reality (AR),
virtual reality (VR), and mixed reality technologies, collectively
referred to as “XR”, these devices must deliver natural experiences
that directly benefit users without unnecessarily burdening them. A
key component of a natural, effortless user experience is providing
input to a system, as the input paradigm allows the user to express
their interaction intent to the system. And yet, the predominant
interaction models for XR rely on either fully manual input, which
has been shown to be physically fatiguing [Hincapié-Ramos et al.
2014; Kang et al. 2020], or voice commands, which are limited in
their capability and social acceptability.

XR systems have the opportunity to reduce user effort by antic-
ipating what a user intends to interact with, and then providing
them with a “quicklink” to complete the predicted action with less
friction [Jonker et al. 2020]. For example, if the XR system was
aware that the user was about to interact, it could map an input
gesture to the inferred target of interaction and allow the user to
complete the action without manually pointing to it, thereby reduc-
ing the physical and cognitive burden on the user. The necessity of
this approach becomes clear as we move towards all-day wearable
AR devices and VR for productivity and work, where long sessions
of use will exacerbate fatigue. Adaptive interfaces that accurately
predict a user’s intent to interact enable adaptive inputs will vastly
reduce the amount of physical and cognitive burden on the user,
and have the potential to shape the future of XR interaction.

Eye gaze is a promising data stream for predicting user inter-
action intent. In prior research, eye movements have provided
substantial insights into human behavior and cognition, with vast
amounts of literature demonstrating the relationship between eye
movements and attention [Borji and Itti 2012; Frintrop et al. 2010;
Wolfe 2000], cognitive state [Hayhoe and Ballard 2005; Henderson
et al. 2013], decision making [Land and Hayhoe 2001; Orquin and
Loose 2013], and memory [Ballard et al. 1995; Hollingworth and
Luck 2009; Hollingworth et al. 2013; Peacock et al. 2021]. This body
of research demonstrates that eye movements characterize internal
cognitive states and goals, which lays the groundwork for com-
putational models that can anticipate human behavior and drive
adaptive interfaces in real time. As such, we explored the use of
gaze data to predict when the user intends to interact with an XR
system.
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Although gaze data has several clear uses for XR [Kim et al. 2019;
Patney et al. 2016; Sun et al. 2018], it has been underutilized when it
comes to providing real-time prediction during interaction [Lengyal
et al. 2021]. Some prior investigations have explored how gaze can
be used to predict a user’s intent to interact, but these focus on
the distribution of attention over defined “areas of interest” in the
environment. For example, Pfeuffer et al. [2021] produced an inter-
face concept that had elements move between the background and
foreground depending on the distribution of gaze between real and
virtual content to accentuate the content that is most likely to be
of interest. Similarly, others have also defined models that use the
distribution of gaze data on specific regions within the environment
to identify and highlight task relevant objects [Gebhardt et al. 2019],
optimize placement of visual elements [Alghofaili et al. 2019b], vi-
sualize potential actions [Karaman and Sezgin 2018], or support
cross-device interaction and information sharing [Li et al. 2019].
These examples provided promising results for enhancing interac-
tion through adaptive interfaces, but they all rely on knowledge
of the environment and the eye’s gaze point in that environment.
These systems rely on robust object detection and tracking algo-
rithms to make predictions, which limits their application to mobile
XR devices, where the scene is not perfectly known and computa-
tional resources are limited. Furthermore, adaptive interfaces that
rely on the interaction between gaze and the environment require
a well calibrated and highly precise eye-tracker!, which is not yet
feasible in commercial devices nor for all people.

There is a considerable benefit in developing models of the intent
to interact that do not depend on the interaction between gaze and
the environment, but instead on the dynamics of eye movements.
For example, Alghofaili et al. [Alghofaili et al. 2019a] demonstrated
that an LSTM model trained only on the angle between gaze and
head direction can be used to identify when a user in VR is lost
and needs navigation assistance. Similarly, gaze features, such as
those based on eye-movement speed, might reveal patterns of slow
and fast eye movements that characterize different cognitive pro-
cesses [Land and Tatler 2009; Land and Hayhoe 2001; Tatler and
Vincent 2008], which could then be used to identify patterns that
precede important actions in the system (e.g., a selection).

Past work demonstrated that a model trained using gaze dynam-
ics could accurately decode whether a selection was made [Bednarik
et al. 2012]. Bednarik et al. used fixation, saccade, and pupil fea-
tures to estimate when users will click to select a tile to move in
a puzzle game, and they achieved good performance with AUC-
ROC scores (a metric of model performance; see Sec. 2.4) as high
as 0.81 when using all features. However, their prediction model
incorporated gaze data up to one fixation after the click, which
reduces its potential application to a real-time scenario. It is not
clear how their model would have performed if it used gaze data
prior to selection alone. Nevertheless, their results suggest that it
is possible to decode moments of interaction from gaze data alone.

1.1 Model Criteria and Our Approach

An ideal model of the intent to interact should be robust to eye-
tracker calibration accuracy, sensor noise, and variation between

!Well calibrated and precise refers to the lack of a fixed offset in gaze position after
calibration, or drift resulting from slippage.
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individuals. Furthermore, it should be able to make predictions in
real-time. An ideal model should be able to make real-time predic-
tion of when a user will interact with a system, which is a critical
step in deploying intent-to-interact models for XR interfaces, as it
will allow the system to provide adaptive interventions at just the
right time. As such, in this paper, we explore whether gaze-based
models can predict the onset of interaction in XR. To our knowl-
edge, this is the first investigation predicting the temporal onset of
interaction intent using nothing more than gaze dynamics leading
up to the moment of input. We trained logistic regression models to
predict the moment of interaction based on point-and-click events
in VR. In our work, we explored two key hypotheses: (H;) Natural
gaze dynamics from eye-tracking can be used to predict the onset
of interaction in VR, (Hz) There is a consistent set of gaze features
across individuals that reflect eye movements related to interaction.

2 METHOD

We conducted a remote VR study to ensure safe data collection dur-
ing the COVID-19 pandemic. This section defines the experimental
protocol, data processing pipeline (Figure 2, Left), feature extraction
approach, models, and metrics.

2.1 Protocol

2.1.1  Participants. Fifteen participants were recruited with in-
formed consent under a protocol approved by the Western Insti-
tutional Review Board. Participant age ranged from 18 to 54 and
two were left-handed. Participants included five females and ten
males, and sampled from a population without extensive experience
using virtual reality devices. Participants were screened to have
normal or corrected-to-normal vision from contact lenses, as eye
glasses interfere with eye-tracking quality. Participants received
equipment by mail and interfaced with researchers through video
calls to complete the experiment remotely.

2.1.2  Equipment. Eye and head movements were collected from
an HTC Vive Pro Eye HMD. Eye-tracking data was logged at 120
Hz for two participants and 60 Hz for others. The difference in sam-
pling rate was a result of the participant hardware configuration.
Prior to the experiment, each participant was walked through a
5-point eye-tracking calibration. The calibration quality was then
assessed qualitatively using the 9-point validation available through
the SteamVR system dashboard. The distance between validation
targets spanned approximately 11 degrees visual angle.? Partici-
pants had to light up each validation target consistently, achieving
a spatial error of no more than 5.5 degrees visual angle>.

2.1.3  Experiment Design. We designed an item selection task in a
virtual pantry. Participants were presented with shelves filled with
common food items and were asked to choose items that best fit
a provided recipe. Participants had to select at least three items,
and at most thirteen. There were six total recipes designed for this
task: Fruit Salad, Garden Salad, Smoothie, Protein Shake, Soup, and
Stir-fry. Items were selected by pointing the Vive hand controller

2Visual angle was determined by measuring pixel distances in a 1440X1600 monocular
viewport that spans a 110° field of view diagonally.

3The calibration accuracy serves as an upper bound on expected gaze error, and as
a result our approach accommodates larger offsets in spatial accuracy than typical
eye-tracking studies.
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Figure 1: Virtual pantry scene used to select items for the
given recipe; (inset) gray sphere indicates intersection with
the controller ray.

and pulling the trigger. A gray sphere placed at the intersection
between the controller ray and item indicates the item could be se-
lected, (Figure 1, inset). Each recipe was considered one trial. Upon
starting the experiment, each participant performed six practice
trials with the Fruit Salad recipe. Next, nine blocks of six trials were
presented with a random assortment of recipes and item layouts.
Each participant encountered the same sequence of recipes and lay-
outs. Before each block, participants were offered a voluntary break
of up to five minutes. After each block, participants completed sub-
jective surveys, but these data are not analyzed within the scope of
this paper. After completing the experiment a post-session survey
was used to capture simulator-sickness scores [Kennedy et al. 1993]
and general questions about experience with VR devices. The entire
data collection process lasted approximately 30 minutes.

2.2 Pre-processing

Our processing pipeline is visualized in Figure 2. The first step
involved transforming the 3D gaze vectors from the eye-in-head
frame of reference to an eye-in-world direction using head orienta-
tion [Diaz et al. 2013]. Next, we computed angular displacement
between consecutive gaze samples, represented as normalized vec-
tors u and v, @ = 2 - atan2(||u — ||, ||u + v||).* Gaze velocity was
computed as 0 divided by the change in time between gaze samples.

2.2.1 Filtering. Gaze data was filtered to remove noise and un-
wanted segments before event detection and feature extraction.
Data from the practice trials and breaks was discarded prior to anal-
ysis, and we remove all gaze samples where gaze velocity exceeds
800° /s, indicating unfeasibly fast eye movements [Dowiasch et al.
2015]. The removed values were then replaced through interpo-
lation. Finally, a median filter with a width of seven samples was
applied to the gaze velocity signal to smooth the signal and account
for noise prior to event detection [Pekkanen and Lappi 2017].

2.2.2  Eye Movement Event Detection. I-VT saccade detection was
performed on the filtered gaze velocity by identifying consecu-
tive samples that exceeded 70° /s [Salvucci and Goldberg 2000]. A
minimum duration of 17ms and maximum duration of 200ms was
enforced for saccades. I-DT fixation detection was performed by
computing dispersion over time windows as the largest angular
displacement from the centroid of gaze samples. Time windows
where dispersion did not exceed 1° were marked as fixations. A

4This equation is more numerically stable for small values of @ than the typical
arccosine of the dot product method.
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minimum duration of 100ms and maximum duration of 2s was
enforced for fixations. An example of fixation and saccade labels
are shown in Figure 2.

2.2.3 Ground Truth. To mark the ground truth of input onsets, we
used the trigger events from the hand controller. To ensure sufficient
samples for training and to allow for temporal variability in features
preceding the click, any sliding window that ended within 200 ms
of a click event was considered a positive class sample (Fig. 2).

2.3 Feature Extraction

We explored a set of 61 total features, including gaze velocity, dis-
persion, event detection labels, low-level eye movement features
derived from events [George and Routray 2016], and the K coeffi-
cient to discern between focal and ambient behavior [Krejtz et al.
2016]. A full list of the features is included in the Supplementary
Material.

Gaze velocity and dispersion provide continuous signals that
represent how fast gaze is moving and how spread out gaze points
are over a period of time, respectively. The dispersion algorithm
requires a time parameter that indicates the amount of gaze data
to be included in the computation. We set this time parameter to
one second to match the maximum possible duration of model
input (Sec. 2.3.2). Low-level features were extracted from each fixa-
tion and saccade event [George and Routray 2016]. The feature set
included fixation duration, saccade amplitude, saccade peak veloc-
ity and statistical measures such as skewness and kurtosis applied
to gaze samples from each event. To represent these features as a
continuous time-series, we set the value for each gaze sample as
the feature value from the most recent fixation or saccade event,
i.e., each was carried forward in time until the next detected event.

The K coefficient [Krejtz et al. 2016] signal is unique within our
feature set as it is influenced by both fixation and saccade events,
measuring ambient/focal eye movement behavior. Ambient eye
movements describe exploratory eye movements that are used to
visually sample the scene, whereas focal describes deliberate eye
movements used to foveate something of interest. The coefficient
is defined as the difference between z-scores of fixation duration
and saccade amplitude, with positive values indicating focal be-
havior from long fixations and short saccades, and negative values
ambient behavior from short fixations and large saccades. This
measure is typically computed over a long sequence of eye move-
ments; however, we considered a shorter window of five seconds
preceding each gaze sample. We expected participants to quickly
shift search and selection behavior during our task and using longer
time windows would reduce the temporal resolution of the feature.

2.3.1 Temporal Resample. Temporal resampling was applied to
account for irregular gaze data sampling and to account for two
participants with 120Hz data. Linear interpolation was used to
sample each feature uniformly in time at 60Hz.

2.3.2  Sliding Windows. Model input was defined as sliding win-
dows of the time-series data. Sliding windows have three parame-
ters: window size, step size, and binning factor. Window size defined
the duration of a predictive window used for model input, while
step size determined how many samples to move forward in time
when generating the sliding windows. The binning factor is used to
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Figure 2: Pipeline used to detect events, extract features, perform feature selection, and evaluate model performance. Right: An
example of gaze velocity signal preceding a click event. Fixations and saccades are indicated by dark red and light green colors

respectively.

reduce the number of model inputs while still capturing temporal
patterns by averaging sequential feature values in time. For exam-
ple, a 60 sample window that spans one second can be compressed
into a 30 sample window with a binning factor of two by averag-
ing feature values from the first two samples, the third and fourth
sample, and so on. Reducing the number of model inputs reduces
the degrees of freedom for the model, lowering computation time
during model training. We used a step size of one and a binning
factor of five based on model performance during initial analyses.
We identified an optimal window size for each gaze feature per indi-
vidual using cross-validation of a logistic regression model trained
using only that feature. We evaluated window sizes of 10, 20, 30, 40,
50, and 60 samples, spanning 167ms to 1000ms. The window size
with the highest model performance was selected as optimal for
that feature, and stored per individual for use in feature selection
and model evaluation.

2.4 Metrics

Model performance for prediction is typically measured using the
area-under-the-curve (AUC) of the Receiver Operator Characteris-
tic (ROC) curve [Bradley 1997]. The ROC curve is constructed to
model true positive rate as a function of false positives at different
threshold values. Larger values indicate better predictive perfor-
mance of the model, and all results are compared to a baseline value
of 0.5 that represents a no skill classifier that performs classification
by guessing. In addition, we computed the AUC of the Precision-
Recall (PR) curve, which is a better metric for highly imbalanced
data [Davis and Goadrich 2006; Tatbul et al. 2018]. The AUC-PR
metric is more sensitive to a large number of null classes that are
mis-classified as false positives. One shortcoming of AUC-PR is
that the baseline value is derived from the chance rate of positive
examples, which will vary by individual and sliding window param-
eters, making it difficult to compare model performance directly
between individuals and models. To create a standardized rate of
chance for each individual, we resampled our data to have a fixed
percentage of positive classes that was equal to the average across
individuals (4.5%).

2.5 Feature Selection

A recursive feature addition process was used to identify the top
features for each individual. This process started with an empty
set and iterated over each feature in a random order for inclusion.

During each iteration, the features were used to train a logistic
regression model with ten-fold cross validation and three repeats,
which resulted in an averaged AUC-PR score. When an added
feature improved the AUC-PR, the feature was retained. George
and Routray [2016] employed a similar procedure, but with recur-
sive feature elimination’. For each individual, a different order of
features was considered, and the models were trained using the
optimal window size for each feature as described in Section 2.3.2.
Individuals retained 20 features on average, with a minimum of 12
and maximum of 26 features.

2.6 Model

We explored whether logistic regression models, commonly used
for gaze data [Costela and Castro-Torres 2020; Gingerich and Conati
2015], could predict the intent to interact using sliding windows.

3 RESULTS

H;: Natural gaze dynamics from eye-tracking can be used to pre-
dict the onset of interaction in VR. To explore whether natural gaze
dynamics could successfully predict the onset of interaction, we
assessed model performance against chance. For the presented anal-
ysis all models were trained with the features listed in Table 1 and
used the optimal window sizes determined for each participant.
Across our sample of participants, we found a maximum AUC-PR
of 0.194 and minimum of 0.065 (Table 2), demonstrating that the
trained models for all participants produced above-chance perfor-
mance on test data (chance=0.045). A similar pattern was observed
for AUC-ROC: we found a maximum score of 0.92 and minimum of
0.717. Figure 3 illustrates the mean PR and ROC curves (black line)
along with the curves for each participant (light gray line). Average
model performance was significantly greater than chance for both
AUC-PR (Mean=.121, t(14)=7.2,p<.0001) and AUC-ROC (Mean=.767,
t(14)=18.36,p<.0001) using a one sample t-test.

Hy: There is a consistent set of gaze features across individuals that
reflect eye movements related to interaction. To provide insight into
the signal within eye-tracking data that was driving model perfor-
mance, we identified the features that were selected by more than
half of the participants using the recursive feature selection proto-
col. This resulted in a set of twelve features, which are described in
Table 1.

SWe first evaluated the elimination approach and found that the retained set depended
heavily on the random order in which they were considered.
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Table 1: Features selected for model evaluation and the number of participants in which they were retained.

Feature Count | Feature Count | Feature Count

Fixation Detection 13 (87%) | Std. Dev. of Vert. Gaze during Saccade | 9 (60%) | Saccade Duration 8 (53%)

Gaze Vel. 12 (80%) | Kurtosis of Vel. during Saccade 9 (60%) | K Coefficient 8 (53%)

Average Vel. during Fixation 10 (67%) | Skew of Vel. during Saccade 9(60%) | Std. Dev. of Vel. during Saccade 8(53%)

Skew of Horiz. Accel. during Saccade | 10 (67%) | Skew of Horiz. Vel. during Saccade 9(60%) | Ang. Distance from Prev. Saccade | 8 (53%)

Individual and Average PR Curves Individual and Average ROC Curves
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Figure 3: PR (left) and ROC (right) performance curves illustrating the average curve (black line), individual curves (gray lines).

4 DISCUSSION

We investigated two key hypotheses in this work: (H1) Natural gaze
dynamics from eye-tracking can be used to predict the onset of
interaction in VR, (H2) There is a consistent set of gaze features
across individuals that reflect eye movements related to interaction.
We validated H; by demonstrating that our models produced above-
chance prediction of the intent to interact in VR across two different
metrics. These results suggest that we were able to predict moments
of interaction using the dynamics of gaze alone, even independently
of any knowledge of the eye’s location in the environment or the
identity of the gazed-upon object. In fact, AUC-ROC scores from
our model were comparable to that of Bednarik et al. [2012] even
though our model only used eye-tracking data that preceded the
selection event, while earlier demonstrations used eye events that
both preceded and followed the selection. Please see the Supple-
mentary Material for a direct comparison to [Bednarik et al. 2012]
with additional performance metrics.

We found that Hy was partially supported by identifying the top
gaze features for modeling across participants. Twelve features were
selected by over half of the time, however they were not common
to all participants. Typically, during search or during orienting
to a target, people tend to produce an initial large eye movement
proportional to the eye’s distance from the target, followed by one or
more smaller corrective saccades that bring the visual target into the
fovea and allow the extraction of that target’s visual features [Krejtz
et al. 2017]. The number and amplitude of these corrective eye
movements directly depend on the initial distance of the saccade
target due to a systematic hypometric bias [Lisi et al. 2019], which
is exemplified by an “undershooting” of the larger initiated saccade.
For lower amplitude saccades indicative of ambient orienting, this

behavior is less pronounced due to a smaller initial absolute error.
These known patterns of eye movements are captured by the K
coefficient, which is a measure of ambient/focal attention, as well as
specific statistical features for saccadic eye movements, such as the
skew. This result corroborates past findings from eye movement
literature that gaze can be used to predict interaction [Hayhoe
and Ballard 2014; Hayhoe and Matthis 2018], and that there are
patterns of eye-movements that characterize particular phases of
visual search, orientation, and selection.

Limitations and Future Work. Although our results are limited to
our specific task and to VR, the proposed modeling framework can
be applied to gaze data and corresponding head rotations collected
in XR as it does not depend on information about the environment
or offsets in spatial accuracy less than 5.5 degrees visual angle. Fur-
thermore, given the alignment between our top predictive features
and the substantial literature on gaze behaviours during visual
search and interaction, we expect the modeling framework to be
generalizable to novel tasks. Our results are limited to offline analy-
sis, however commercial eye trackers are capable of real-time event
detection that would support the proposed modeling framework. In
future work, these types of modeling effort might be improved upon
through the use of time-series models, including recurrent neural
networks and variants such as long short-term memory models.
While logistic regression models are interpretable and light-weight,
we see the potential to incorporate deep networks to boost per-
formance. Deep learning approaches have already been applied to
enhance mid-air interactions and reduce user fatigue [Cheema et al.
2020]. In future work trained models can be deployed as part of an
adaptive interface to better understand how well intent-to-interact
models perform in practice.
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Table 2: Area under the curve metrics from within-subjects evaluation. AUC-PR and AUC-ROC have a baseline score of 0.045
and 0.5 respectively. Bold values indicate the top performing model for the corresponding metric.

Participant | AUC-PR | AUC-ROC | Participant | AUC-PR | AUC-ROC | Participant AUC-PR AUC-ROC
Poo1 0.150 0.717 P0o08 0.194 0.754 Po14 0.083 0.721
P002 0.065 0.688 P009 0.110 0.922 Po15 0.084 0.732
Poo4 0.128 0.793 Po10 0.141 0.748 Po16 0.107 0.763
Po05 0.072 0.737 Po11 0.118 0.796

P006 0.171 0.744 P012 0.092 0.757

P007 0.186 0.822 P013 0.107 0.807 Mean (SD) | 0.121(0.04) | 0.767 (0.06)

5 CONCLUSION

Models that predict a user’s intent to interact from eye movements
can be applied to drive a predictive XR interface. Our results sug-
gested that our modeling framework can predict moments of in-
teraction with a logistic regression model that is interpretable and
practical for real-time deployment. Thus, predicting a user’s intent
to interact enables an adaptive XR interface that has potential to
provide users with easy-to-use, minimally fatiguing XR interactions
for all-day use.
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